Generalized super-solutions of parabolic equations
نویسندگان
چکیده
منابع مشابه
Stability of Solutions of Quasilinear Parabolic Equations
Abstract. We bound the difference between solutions u and v of ut = a∆u+ divx f + h and vt = b∆v + divx g + k with initial data φ and ψ, respectively, by ‖u(t, ·)− v(t, ·)‖Lp(E) ≤ AE(t)‖φ−ψ‖ 2ρp L∞(Rn) +B(t)(‖a− b‖∞ + ‖∇x · f − ∇x · g‖∞ + ‖fu − gu‖∞ + ‖h− k‖∞)p |E| ηp . Here all functions a, f , and h are smooth and bounded, and may depend on u, x ∈ R, and t. The functions a and h may in additi...
متن کاملBoundary Behavior of Solutions of Parabolic Equations
A boundary backward Harnack inequality is proved for positive solutions of second order parabolic equations in non-divergence form in a bounded cylinder Q = (0; T) which vanish on @ x Q = @ (0; T) ; where is a bounded Lipschitz domain in R n. This inequality is applied to the proof of the HH older continuity of the quotient of two positive solutions vanishing on a portion of @ x Q: 1. Introduct...
متن کاملBackward selfsimilar solutions of supercritical parabolic equations
We consider the exponential reaction–diffusion equation in space-dimension n ∈ (2, 10). We show that for any integer k ≥ 2 there is a backward selfsimilar solution which crosses the singular steady state k-times. The sameholds for the power nonlinearity if the exponent is supercritical in the Sobolev sense and subcritical in the Joseph–Lundgren sense. © 2008 Elsevier Ltd. All rights reserved.
متن کاملAveraging for Fundamental Solutions of Parabolic Equations
Herein, an averaging theory for the solutions to Cauchy initial value problems of arbitrary order, "-dependent parabolic partial di erential equations is developed. Indeed, by directly developing bounds between the derivatives of the fundamental solution to such an equation and derivatives of the fundamental solution of an \averaged" parabolic equation, we bring forth a novel approach to compar...
متن کاملOn Convergence of Difference Schemes for IBVP for Quasilinear Parabolic Equations with Generalized Solutions
For initial boundary value problem (IBVP) for onedimensional quasilinear parabolic equations with generalized solutions an usual linearized difference scheme is constructed. The uniform parabolicity condition 0 < k 1 ≤ k(u) ≤ k 2 is assumed to be fulfilled for the sign alternating solution u(x, t) ∈ ¯ D(u) only in the domain of exact solution values (unbounded nonlinearity). On the basis of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1976
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1976-0473522-6